Premium
Preparation of silicon‐/phosphorous‐containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins' thermal stability and flame retardancy
Author(s) -
Liu Ying Ling,
Chiu Yie Chan,
Wu Chuan Shao
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.11383
Subject(s) - epoxy , char , materials science , thermal stability , bisphenol a , silicon , curing (chemistry) , fire retardant , chemical engineering , yield (engineering) , composite material , pyrolysis , engineering , metallurgy
Epoxy resins containing both phosphorous and silicon were prepared via the fusion process of reacting a phosphorous diol and a silicon diol with a bisphenol‐A‐type epoxy. With various feeding ratios of the reactants, epoxy resins with different phosphorous and silicon contents were obtained. Through curing the epoxies with diaminodiphenylmethane, the cured epoxy resins exhibit tailored glass transition temperatures (159–77°C), good thermal stability (>320°C), and high char yields at 700°C under air atmosphere. The high char yield was demonstrated to come from the synergistic effect of phosphorous and silicon, where phosphorous enriches char formation and silicon protects the char from thermal degradation. Moreover, high flame retardancy of the epoxy resins was found by the high LOI value of 42.5. The relationship of the char yields at 700°C under air atmosphere (ρ) and the LOI values of the epoxy resins could be expressed as LOI = 0.62ρ + 19.2. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 404–411, 2003