z-logo
Premium
Acidic and basic hydrolysis of poly(N‐vinylformamide)
Author(s) -
Gu L.,
Zhu S.,
Hrymak A. N.
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.11364
Subject(s) - hydrolysis , chemistry , amide , hydrolysis constant , cationic polymerization , polymer chemistry , polymer , kinetics , base (topology) , alkaline hydrolysis , organic chemistry , reaction rate constant , mathematical analysis , physics , mathematics , quantum mechanics
Abstract Poly( N ‐vinylformamide) (PNVF) was synthesized and hydrolyzed to poly(vinylamine) (PVAm) in both HCl and NaOH solutions. The hydrolysis kinetics and the equilibrium hydrolysis were examined experimentally at different temperatures, polymer concentrations, and acid‐ or base‐to‐amide molar ratios. The hydrolysis kinetics strongly depended on temperature, polymer, and HCl or NaOH concentrations, but showed little dependence on PNVF molecular weight. The acid hydrolysis of PNVF exhibited limited conversions because of the electrostatic repulsion among the cationic amine groups generated during hydrolysis and proton hydrates. In the basic hydrolysis, complete amide conversions were observed when the NaOH/amide molar ratios were greater than unity. The effects of temperature and PNVF concentration on the equilibrium amide conversion appeared to be negligible in both acidic and basic hydrolysis. The equilibrium conversions of base hydrolysis were higher than those of acidic hydrolysis under the same reaction conditions. At NaOH/amide ratios of less than unity, the equilibrium hydrolysis experiments revealed that one base molecule could induce the hydrolysis of more than one amide group. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3412–3419, 2002

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here