Premium
Linear thermoelastic characterization of anisotropic poly(ethylene terephthalate) films
Author(s) -
Feng Ru,
Farris Richard. J.
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.11179
Subject(s) - materials science , orthotropic material , thermal expansion , poisson's ratio , composite material , compressibility , ultimate tensile strength , thermodynamics , poisson distribution , physics , statistics , mathematics , finite element method
All nine independent elastic constants have been determined for a biaxially stretched poly(ethylene terephthalate) (PET) film using novel mechanical methods. The orthotropic directions and the in‐plane Poisson's ratios were first characterized using vibrational holographic interferometry of tensioned membrane samples. The out‐of‐plane Poisson's ratio was obtained by measuring the change in tension with the change in pressure for constant strain conditions. Pressure–volume–temperature (PVT) equipment was used to measure the bulk compressibility as well as the volumetric thermal expansion coefficient (TEC). The in‐plane Young's moduli were obtained by tensile tests, while the out‐of‐plane modulus was calculated from the compressibility and other elastic constants that describe the in‐plane behavior. The in‐plane TECs in the machine and transverse directions were determined using a thermal mechanical analyzer (TMA). The out‐of‐plane TEC was determined using these values and the volumetric TEC determined via PVT. The resulting compliance matrix satisfies all of the requirements of a positive‐definite energy criterion. The procedure of characterization utilized in this article can be applied to any orthotropic film. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2937–2947, 2002