z-logo
Premium
Aggregation behavior of 3,6‐O‐carboxymethylated chitin in aqueous solutions
Author(s) -
Chen Lingyun,
Du Yumin
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.11093
Subject(s) - aqueous solution , chitin , viscometer , permeation , chemical engineering , hydrogen bond , gel permeation chromatography , chemistry , polymer chemistry , intermolecular force , polysaccharide , materials science , chitosan , molecule , polymer , organic chemistry , membrane , composite material , viscosity , biochemistry , engineering
The aggregation behavior of 3,6‐O‐carboxymethylated chitin (3,6‐O‐CM‐chitin) in aqueous solutions was investigated by viscometry, gel permeation chromatography (GPC), and GPC combined with laser light scattering (GPC‐LLS) techniques. 3,6‐O‐CM‐chitin has a strong tendency to form aggregates in NaCl aqueous solutions with the apparent aggregation number ( N ap ) of about 27. There were three kinds of aggregates corresponding to different cohesive energies, the aggregates with low cohesive energy were first dissociated at 60°C, the aggregates with middle cohesive energy were then dissociated at 80 to 90°C, and the aggregates with high cohesive energy were difficult to be disrupted by heating. Decreasing polysaccharide concentration ( c p ) or increasing NaCl concentration ( c s ) reduced the content of the aggregates. At the critical c p of 2.5 × 10 −5 g/mL, the aggregates were dissociated into single chains completely. The change of aggregation and disaggregation of 3,6‐O‐CM‐chitin in water–cadoxen mixtures occurred from 0.1 to 0.4 of v cad , and were irreversible. Intermolecular hydrogen bonding can be ascribed as main driving force for aggregation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1838–1843, 2002

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom