Premium
Mechanical properties and morphology of poly(ethylene glycol)‐side‐chain‐modified bismaleimide polymer
Author(s) -
Chian K. S.,
Du X. Y.,
Goy H. A.,
Feng J. L.,
Yi S.,
Yue C. Y.
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10978
Subject(s) - peg ratio , ethylene glycol , materials science , flexural strength , polymer , flexural modulus , morphology (biology) , composite material , toughness , fracture toughness , polymer chemistry , scanning electron microscope , chemical engineering , finance , biology , engineering , economics , genetics
Two maleimido‐end‐capped poly(ethylene glycol) (m‐PEG)‐modified bismaleimide (BMI) resins [4,4′‐bismaleimido diphenylmethane (BDM)] were synthesized from poly(ethylene glycol) (PEG) of two different molecular weights. A series of m‐PEGs and unmodified BDM were blended and thermally cured. The effect of incorporating m‐PEG side chains on the morphology and mechanical behaviors of BMI polymer were evaluated. The mechanical properties of these m‐PEG‐modified BMIs that were evaluated included flexural modulus, flexural strength, strain at break, fracture toughness, and fracture energy. The morphology of these blends was studied with scanning electron microscopy. All the m‐PEG‐modified BMI polymers showed various degrees of phase separation depending on the molecular weights and concentrations of the m‐PEG used. The effects of these morphological changes in the m‐PEG‐modified BMI polymers were reflected by the improved fracture toughness and strain at break. However, there was a reduction in the flexural moduli in all m‐PEG‐modified BMI polymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 715–724, 2002