Premium
Syntheses of acrylate core/shell imbiber beads by seeded suspension copolymerization and one‐stage copolymerization for solvent absorption–desorption
Author(s) -
Kiatkamjornwong Suda,
Akkarakittimongkol Pranut,
Omi Shinzo
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10631
Subject(s) - copolymer , polymer chemistry , suspension polymerization , methyl acrylate , styrene , materials science , methyl methacrylate , polystyrene , vinyl acetate , butyl acrylate , acrylate , monomer , polymerization , solvent , benzoyl peroxide , chemistry , polymer , organic chemistry , composite material
Seeded suspension copolymerization or a one‐stage copolymerization was used to synthesize acrylate core/shell imbiber beads. A two‐stage polymerization technique was used for seeded suspension polymerization. The seed particles for poly(methyl acrylate) or poly(2‐ethylhexyl acrylate) were synthesized first in a mixed solvent of toluene/isooctane containing the ethylene glycol dimethacrylate (EGDMA) crosslinking agent. These beads were swollen in styrene‐EGDMA‐BPO (benzoyl peroxide) and then polymerized in the aqueous phase to produce the polystyrene (PS) shell. The one‐stage copolymerization was carried out in toluene/isooctane containing methyl methacrylate (MMA), styrene (St), EGDMA, and BPO at 75°C for 10 h to give a core/shell copolymer of St‐MMA morphology. The appearance of core/shell imbiber beads prepared from these two techniques varied from monomer to monomer. This article describes the preparation, characterization, and application of the core/shell beads for organic solvent absorption/desorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 670–682, 2002