Premium
Morphology and mechanical properties of reactive compatibilized polystyrene/ethylene‐vinyl acetate‐vinyl alcohol blends
Author(s) -
Tang L. W.,
Tam K. C.,
Yue C. Y.,
Hu X.,
Lam Y. C.,
Li L.
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10627
Subject(s) - materials science , vinyl acetate , maleic anhydride , compatibilization , fourier transform infrared spectroscopy , reactive extrusion , ethylene vinyl acetate , ultimate tensile strength , polymer chemistry , polystyrene , vinyl alcohol , polymer blend , composite material , charpy impact test , transesterification , copolymer , chemical engineering , plastics extrusion , polymer , organic chemistry , chemistry , methanol , engineering
A reactive compatibilizer, styrene‐maleic anhydride (SMA) was used to compatibilize the blends of polystyrene (PS) and ethylene‐vinyl acetate‐vinyl alcohol (EVAOH), which was synthesized from ethylene‐vinyl acetate (EVA) using transesterification reaction. The compatibilized blends with different compositions were prepared using a twin‐screw extruder and injection molded into the required test specimens. Morphology of Charpy impact‐fractured surfaces, tensile, and impact properties of the blends were investigated. Fourier‐transform infrared spectroscopy (FTIR) was also applied for specific samples to elucidate the presence of the functional groups reaction necessary for reactive compatibilization. The results of the ternary PS/EVAOH/SMA blends illustrate that the addition of SMA as a compatibilizer slightly reduce the elongation at break. From the impact‐fractured surfaces of the blends, it is evident that the morphology developed sizable pores when SMA was added into the blends. This might be attributed to the residual octanol‐1, produced from the synthesis of EVAOH, as there is a possibility of a reaction between hydroxyl groups in the octanol‐1 and the anhydride groups in the SMA. This disrupted the stability of the morphology and resulted in the decrease in the elongation, and hence, the tensile toughness. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 209–217, 2002