z-logo
Premium
New soybean oil–styrene–divinylbenzene thermosetting copolymers. v. shape memory effect
Author(s) -
Li Fengkui,
Larock Richard C.
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10493
Subject(s) - divinylbenzene , materials science , thermosetting polymer , polymer , soybean oil , copolymer , shape memory polymer , glass transition , styrene , composite material , chemical engineering , dicyclopentadiene , shape memory alloy , polymer chemistry , chemistry , polymerization , food science , engineering
A series of new shape memory polymers are synthesized by the cationic copolymerization of regular soybean oil, low saturation soybean oil (LoSatSoy oil), and/or conjugated LoSatSoy oil with styrene and divinylbenzene, norbornadiene, or dicyclopentadiene initiated by boron trifluoride diethyl etherate or related modified initiators. The shape memory properties of the soybean oil polymers are characterized by the deformability ( D ) of the materials at temperatures higher than their glass‐transition temperatures ( T g ), the degree to which the deformation is subsequently fixed at ambient temperature ( FD ), and the final shape recovery ( R ) upon being reheated. It is found that a T g well above ambient temperature and a stable crosslinked network are two prerequisites for these soybean oil polymers to exhibit shape memory effects. Good shape memory materials with high D , FD , and R values are prepared by controlling the crosslink densities and the rigidity of the polymer backbones. The advantage of the soybean oil polymers lies in the high degree of chemical control over the shape memory characteristics. This makes these materials particularly promising in applications where shape memory properties are desirable. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1533–1543, 2002; DOI 10.1002/app.10493

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here