z-logo
Premium
Preparation of chemically crosslinked gels with maleate‐denatured poly(vinyl alcohol) and its application to drug release
Author(s) -
Horiike Satoshi,
Matsuzawa Shuji,
Yamaura Kazuo
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10411
Subject(s) - vinyl alcohol , swelling , polymer chemistry , solubility , fourier transform infrared spectroscopy , chemistry , titration , nuclear chemistry , alcohol , buffer solution , materials science , chemical engineering , polymer , organic chemistry , composite material , engineering
Maleate‐denatured poly(vinyl alcohol) (M‐PVA) was crosslinked with heating. The mechanism of crosslinking was studied with several procedures: titration, Fourier transform infrared, and solubility. The carboxyl groups of M‐PVA consisted of carboxylates and a few free carboxyl groups. The crosslink was the ester linkage between hydroxyl and carboxyl groups. Several kinds of M‐PVA tablets were prepared under different conditions: pressures of 200–600 kgf/cm 2 and grain sizes of 75 (pass) to 250 μm (on). The swelling behavior of these chemically crosslinked tablets was studied in a buffer solution of pH 7.4, mainly at 37°C. Moreover, the effect of temperature from 5 to 50°C and the effect of repeated swell–dry cycles on the behavior of the tablets in a buffer solution [106 μm (on), 200 kgf/cm 2 ] were studied. The release of p ‐acetamidophenol from those tablets in the pH 7.4 buffer solution was studied. The different release patterns were due to the differences in the swelling behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1178–1184, 2002; DOI 10.1002/app.10411

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom