Premium
Fiber formation from semi‐interpenetrating polymer networks consisting of polycaprolactone and a poly(ethylene glycol) macromer
Author(s) -
Yang K. S.,
Park S. H.,
Choi Y. O.,
Cho C. S.
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10351
Subject(s) - polycaprolactone , ultimate tensile strength , materials science , crystallinity , macromonomer , ethylene glycol , composite material , peg ratio , fiber , polymer , polymer chemistry , chemical engineering , copolymer , finance , economics , engineering
Semi‐interpenetrating polymer networks (SIPNs) consisting of polycaprolactone (PCL) and poly(ethyleneglycol) (PEG) macromer was prepared to improve tensile property in developing biodegradable sutures. When the PEG macromer formed SIPNs with PCL, biodegradability, mechanical strength, and hydrophilicity were improved. The SIPNs fibers formed from the dry spinning process showed an increase of not only tensile strength but also water content with an increase of PEG content. These results represent an increase of the crosslinking density of the PEG network with hydrophobic property. The drawing of SIPNs fibers also further enhanced the tensile strength and the crystallinity of the SIPNs fibers. Unimelting temperature of the SIPNs fiber was observed as an indication of the polymer network without phase separation. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 835–841, 2002; DOI 10.1002/app.10351