Premium
Use of rice husk ash as filler in natural rubber vulcanizates: In comparison with other commercial fillers
Author(s) -
SaeOui P.,
Rakdee C.,
Thanmathorn P.
Publication year - 2002
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10249
Subject(s) - husk , materials science , natural rubber , filler (materials) , ultimate tensile strength , composite material , carbon black , precipitated silica , tear resistance , black rice , fourier transform infrared spectroscopy , chemical engineering , chemistry , raw material , organic chemistry , botany , engineering , biology
Rice husk ash is mainly composed of silica and carbon black remaining from incomplete combustion. Both silica and carbon black have long been recognized as the main reinforcing fillers used in the rubber industry to enhance certain properties of rubber vulcanizates, such as modulus and tensile strength. In this study, two grades of rice husk ash (low‐ and high‐carbon contents) were used as filler in natural rubber. Comparison was made of the reinforcing effect between rice husk ashes and other commercial fillers such as talcum, china clay, calcium carbonate, silica, and carbon black. Fourier transform infrared spectroscopy (FTIR) analysis was employed to study the presence of functional groups on the ash surface. The effect of silane coupling agent, bis(3‐triethoxysilylpropyl)tetrasulfane (Si‐69), on the properties of ash‐filled vulcanizates was also investigated. It was found that both grades of rice husk ash provide inferior mechanical properties (tensile strength, modulus, hardness, abrasion resistance, and tear strength) in comparison with reinforcing fillers such as silica and carbon black. However, the mechanical properties of the vulcanizates filled with rice husk ash are comparable to those filled with inert fillers. The addition of silane‐coupling agent has little effect on the properties of the ash‐filled vulcanizates. This is simply due to the lack of silanol groups on the ash surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2485–2493, 2002