Premium
Application of CO 2 laser heating zone drawing and zone annealing to nylon 6 fibers
Author(s) -
Suzuki Akihiro,
Ishihara Masayoshi
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.10094
Subject(s) - materials science , crystallinity , laser , composite material , annealing (glass) , continuous wave , fiber laser , optics , fiber , physics
Nlon 6 fibers were zone drawn and zone annealed by using a continuous wave carbon dioxide laser to develop their mechanical properties. A laser‐heating zone drawing was carried out under a applied tension of 35.4 MPa at a power density of 9.65 W · cm −2 , and then the zone‐drawn fiber was annealed. A laser‐heating zone annealing was carried out in two steps at a power density of 9.65 W · cm −2 ; the first step was carried out under 423 MPa and the second under 517 MPa. The treating temperature of the fiber heated by the CO 2 laser was measured by using an infrared thermographic camera equipped with a magnifying lens. The treating temperature at the zone drawing is 138°C, and those at the first and the second zone annealing are 121 and 125°C, respectively. The second laser‐heated zone‐annealed fiber has a birefringence of 65.2 × 10 −3 , a degree of crystallinity of 54%, and a storage modulus of 21 GPa at 25°C. Wide‐angle X‐ray diffraction patterns for the laser‐heated zone‐drawn and the zone‐annealed fibers show (200) reflection and (002/202) doublet due to only an α form on the equator. The laser‐heated zone‐drawn fiber has a melting endotherm peaking at 216°C and a trace of shoulder on the higher temperature side of its peak, and the laser‐heated zone‐annealed fibers have a single melting endotherm peaking at 216°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1711–1716, 2002