Premium
Organometallic compounds with biologically active molecules: in vitro antibacterial and antifungal activity of some 1,1′‐(dicarbohydrazono) ferrocenes and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes
Author(s) -
Chohan Zahid H.,
Supuran Claudiu T.
Publication year - 2005
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.944
Subject(s) - chemistry , hydrazide , candida glabrata , antibacterial activity , proteus vulgaris , aspergillus niger , cobalt , nuclear chemistry , candida albicans , stereochemistry , microbiology and biotechnology , organic chemistry , biochemistry , escherichia coli , bacteria , genetics , gene , biology
Some 1,1′‐(dicarbohydrazono) ferrocenes have been prepared by condensing 1,1′‐diacetylferrocene with either 2‐furoic hydrazide, 2‐thiophenecarboxylic hydrazide or 2‐salicylic hydrazide. All the ligands synthesized were characterized by IR and NMR spectroscopy and elemental analysis data (carbon, hydrogen, nitrogen) and then were used as ligands to react with cobalt(II), copper(II), nickel(II) and zinc(II) metals as chlorides to afford metal complexes having the general formula M(L)Cl 2 . IR and electronic spectral data, magnetic moment and elemental analyses were used in the structural investigation of the metal complexes synthesized. The ligands synthesized and their metal(II) complexes have been screened for their in vitro antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata . The results of these studies show the metal complexes to be more antibacterial and antifungal than the uncomplexed ligands. However, the potency of all the ligands synthesized and their metal complexes was lower than that of the standard drugs. Copyright © 2005 John Wiley & Sons, Ltd.