Premium
Selective adsorption and separation of dyes from aqueous solution by a zirconium‐based porous framework material
Author(s) -
Jia Shifang,
Song Sufang,
Zhao Xudong
Publication year - 2021
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.6314
Subject(s) - chemistry , adsorption , zirconium , aqueous solution , rhodamine b , stacking , cationic polymerization , selective adsorption , metal organic framework , chemical engineering , porosity , rhodamine , chromatography , inorganic chemistry , organic chemistry , fluorescence , catalysis , physics , photocatalysis , quantum mechanics , engineering
A water‐stable zirconium‐based metal–organic framework, MOF‐808, has been applied in selective adsorption and separation of the dyes (anionic fluorescein sodium [FS] and cationic rhodamine B [RhB]). Single‐component adsorption experiments indicate the superior adsorption of FS with a maximum adsorption capacity of 480.2 mg g −1 , almost four times of the capacity for RhB. Further separation study shows that separation of these dyes can be achieved at a wide pH range of 3.5–8.5 and continuous separation is feasible in a simulated chromatographic column. Besides, this material can be well regenerated through acid washing method. Pore sieving effect is considered to be the key factor for the highly efficiency separation, and the host–guest interactions including H‐bond, π–π stacking, and coordination interactions are the main driven forces for the adsorption. Thus, this work demonstrates that MOF‐808 not only is a promising material for efficient separation of FS and RhB but also provides a new perspective for developing adsorbent with the help of distinct pore and chemical properties of MOFs.