Premium
Magnetic apple seed starch functionalized with 2,2′‐furil as a green host for cobalt nanoparticles: Highly active and reusable catalyst for Mizoroki–Heck and the Suzuki–Miyaura reactions
Author(s) -
Arghan Maryam,
Koukabi Nadiya,
Kolvari Eskandar
Publication year - 2019
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.5075
Subject(s) - catalysis , chemistry , cobalt , leaching (pedology) , heterogeneous catalysis , schiff base , nanoparticle , organic chemistry , chemical engineering , polymer chemistry , environmental science , soil science , engineering , soil water
From the perspective of green chemistry, in catalytic systems, being low cost and eco‐friendly, in addition to high chemical and thermal stability, are requirements of support materials. In this regard, we used apple seed starch as an accessible, nontoxic, and cost‐effective support material. In order to take advantage of magnetic separation, the magnetite nanoparticles were chosen as an ideal pair for apple seed starch. Furthermore, during the Schiff base reaction, the magnetic apple seed starch was functionalized with 2,2′‐furil along with amine functionality to be used as a bio‐support for immobilization of cobalt. The introduction of cobalt had a significant effect on the greenness of the catalyst and reducing its price. FT‐IR, TGA, XRD, FE‐SEM, TEM, VSM, ninhydrin test, element mapping, AAS, and EDX analysis were applied to characterize the newly prepared catalyst. The effectiveness of this novel Schiff base supported catalyst was evaluated in the Mizoroki–Heck and the Suzuki–Miyaura coupling reactions. High reactivity and selectivity were among the most prominent characteristics of the catalyst as compared to previously reported catalysts. The longevity test and hot filtration showed the ability to use the catalyst at least 5 times and negligible cobalt leaching during the reaction, respectively. This work is the first report on the usage of apple seed starch as a supporting catalyst and 2,2′‐furil as a ligand in the catalyst modifications and catalytic activity. Accordingly, this can be the beginning of an attractive way in the design and synthesis of heterogeneous catalysts.