Premium
Density functional calculations for Rh(I)‐catalyzed C–C bond activation of siloxyvinylcyclopropanes and diazoesters
Author(s) -
Meng Qingxi,
Wang Fen,
Qian Ping
Publication year - 2019
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.4869
Subject(s) - chemistry , rhodium , reductive elimination , oxidative addition , carbene , medicinal chemistry , catalysis , density functional theory , ligand (biochemistry) , stereochemistry , photochemistry , computational chemistry , organic chemistry , biochemistry , receptor
Density functional theory was employed to investigate rhodium(I)‐catalyzed C–C bond activation of siloxyvinylcyclopropanes and diazoesters. The B3LYP/6‐31G(d,p) level (LANL2DZ(f) for Rh) was used to optimize completely all intermediates and transition states. The computational results revealed that the most favorable pathway was the channel forming the methyl‐branched acyclic product p1 in path A (cyclooctadiene (cod) as the ligand), and the oxidative addition was the rate‐determining step for this channel. It proceeded mainly through the complexation of diazoester to rhodium, rhodium–carbene formation, coordination of siloxyvinylcyclopropane, oxidative addition (C2–C3 bond cleavage) of siloxyvinylcyclopropane, carbene migratory insertion, β‐hydrogen elimination and reductive elimination. The complexation of diazoester to rhodium occurred prior to the coordination of siloxyvinylcyclopropane. Also, the role of the ligands cod, chlorine and 1,4‐dioxane, the effect of di‐rhodium catalyst and the solvent effect are discussed in detail.