Premium
Gold‐Aryl nanoparticles coated with polyelectrolytes for adsorption and protection of DNA against nuclease degradation
Author(s) -
Panicker Seema,
Ahmady Islam M.,
Almehdi Ahmed M.,
Workie Bizuneh,
SahleDemessie Endalkachew,
Han Changseok,
Chehimi Mohamed M.,
Mohamed Ahmed A.
Publication year - 2019
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.4803
Subject(s) - chemistry , colloidal gold , dynamic light scattering , polyelectrolyte , agarose gel electrophoresis , nanoparticle , nanomedicine , oligonucleotide , bioconjugation , dna , biophysics , nanotechnology , combinatorial chemistry , polymer , biochemistry , organic chemistry , materials science , biology
Binding DNA on nanoparticles was pursued to form nanoplatform for formation of non‐viral gene system. Carboxyl derivatized gold‐aryl nanoparticles can bind with biodegradable cationic polyelectrolytes such as polydiallyldimethylammonium chloride (PDADMAC). In our study, we used gold‐aryl nanoparticles (AuNPs) treated with PDADMAC to form conjugates with non‐thiol or non‐disulfide modified oligonucleotide DNA. Both AuNPs‐DNA and PDADMAC‐AuNPs‐DNA biomaterials were characterized using UV–Vis, dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and agarose gel electrophoresis. UV–Vis showed a red shift in the plasmon peak as compared with unconjugated AuNPs. DLS measurements also showed difference in the size of AuNPs‐DNA and PDADMAC‐AuNPs‐DNA. AFM and TEM results showed proper conjugation of DNA with AuNPs. Gel electrophoresis proved the presence of interaction between PDADMAC‐AuNPs and negatively charged DNA. The binding of DNA in the described bioconjugate enhanced its protection against nuclease degradation and prolonged its presence in the digestive environment of DNase‐I. From the results we expect that these biomaterials can be used in nanomedicine with emphasis on non‐viral gene system.