Premium
Surface modified SPIONs‐Cr(VI) ions‐immobilized organic‐inorganic hybrid as a magnetically recyclable nanocatalyst for rapid synthesis of polyhydroquinolines under solvent‐free conditions at room temperature
Author(s) -
Maleki Ali,
Hamidi Negar,
Maleki Saied,
Rahimi Jamal
Publication year - 2018
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.4245
Subject(s) - thermogravimetric analysis , chemistry , superparamagnetism , dynamic light scattering , nanocomposite , dimedone , scanning electron microscope , ethyl acetoacetate , fourier transform infrared spectroscopy , catalysis , chemical engineering , nanoparticle , nuclear chemistry , analytical chemistry (journal) , inorganic chemistry , organic chemistry , materials science , composite material , physics , magnetization , quantum mechanics , magnetic field , engineering
In this work, a magnetic hybrid dichromate nanocomposite with triphenylphosphine surface modified superparamagnetic iron oxide nanoparticles (SPIONs) as a recyclable nanocatalyst was designed, prepared and characterized by Fourier transform infrared spectroscopy (FT‐IR) spectra, X‐ray diffraction (XRD) pattern analysis, vibrating sample magnetometer (VSM) curves, X‐ray fluorescence (XRF) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images and dynamic light scattering (DLS) analysis. Then, it was used in a green and efficient procedure for one‐pot multicomponent synthesis of polyhydroquinoline derivatives by the condensation of aldehydes, dimedone or 1,3‐cyclohexadione, ethyl acetoacetate and ammonium acetate. This protocol includes some new and exceptional advantages such as short reaction times, low catalyst loading, high yields, solvent‐free and room temperature conditions, easy separation and reusability of the catalyst.