z-logo
Premium
Metal complexes of chalcone analogue: Synthesis, characterization, DNA binding, molecular docking and antimicrobial evaluation
Author(s) -
Atlam Faten M.,
ElNahass Marwa N.,
Bakr Eman A.,
Fayed Tarek A.
Publication year - 2018
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.3951
Subject(s) - chemistry , intercalation (chemistry) , metal , binding energy , chalcone , bond length , computational chemistry , molecule , stereochemistry , inorganic chemistry , organic chemistry , physics , nuclear physics
A novel chalcone, namely 5‐(4‐(dimethylamino)phenyl)‐1‐(thiophen‐2‐yl)penta‐2,4‐dien‐1‐one, DMATP, and its complexes with nickel(II), vanadium(III), palladium(II) and platinum(II) metal ions were synthesized and characterized using a set of chemical and spectroscopic tools including elemental analysis, electrical conductance, magnetic susceptibility and spectral techniques. The interactions of the synthesized chalcone and its metal complexes with DNA were studied using steady‐state absorption and emission techniques as well as viscosity and electrochemical measurements. The obtained results confirm DNA intercalation. Additionally, theoretical studies were performed for all the investigated compounds using DFT/B3LYP calculations. The optimized geometries are found to be in good agreement with the suggested experimental structures. The bond lengths, bond angles, chemical reactivity, energy components, binding energy and dipole moment were evaluated. Also, theoretical infrared intensities and thermodynamic parameters for all compounds were calculated. Molecular docking calculations show that the Ni(II) complex exhibits the highest DNA binding activity, which agrees well with the experimental results. Finally, the compounds were screened for antimicrobial activity using several microorganisms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here