Premium
Synthesis, crystal structure, DNA interaction and anticancer evaluation of pyruvic acid derived hydrazone and its transition metal complexes
Author(s) -
Hegde Divya,
Dodamani Suneel,
Kumbar Vijay,
Jalalpure Sunil,
Gudasi Kalagouda B.
Publication year - 2017
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.3851
Subject(s) - chemistry , ethidium bromide , acridine orange , hydrazone , ligand (biochemistry) , mtt assay , crystallography , intercalation (chemistry) , stereochemistry , dna , inorganic chemistry , in vitro , apoptosis , biochemistry , receptor
A novel tridentate chelating ligand, Ethyl 2‐(2‐(2‐chlorobenzoyl)hydrazono)propanoate and its late transition metal complexes were synthesized, characterized and evaluated for anticancer behavior. The structures were elucidated with the help of elemental analyses, spectral (vibrational, electronic, NMR and mass) and thermo‐gravimetric techniques. Single crystal X‐ray crystallographic studies of the ligand suggest an orthorhombic lattice structure with Pna21 space group. The interaction of ligand and complexes with DNA (CT‐DNA) has been extensively studied using absorption, emission, viscosity and thermal denaturation studies with E. coli DNA. The DNA cleavage ability of ligand and metal complexes was tested using plasmid pBR322 DNA by gel electrophoresis method. The ligand and its copper complex have been evaluated for their in vitro anticancer activity against human cancer cells of different origin such as KB (Oral), A431 (Skin), Mia‐Pa‐Ca (Pancreases), K‐549 (Lung), K‐562 (Leukemia), MCF‐7 (Breast) and VERO by MTT assay and the apoptosis assay was carried out with acridine orange/ethidium bromide (AO/EB) staining method. The studies suggest that ligand and copper complex exhibit significant cytotoxic activity on KB, MCF‐7, A‐431, Mia‐Pa‐Ca‐2 an d A‐549 cell lines compared to K‐562 and VERO cell lines.