z-logo
Premium
Non–symmetrically p –nitrobenzyl–substituted N –heterocyclic carbene–silver(I) complexes as metallopharmaceutical agents
Author(s) -
Shahini C. R.,
Achar Gautam,
Budagumpi Srinivasa,
Tacke Matthias,
Patil Siddappa A.
Publication year - 2017
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.3819
Subject(s) - hexafluorophosphate , chemistry , antibacterial activity , carbene , minimum inhibitory concentration , nuclear chemistry , imidazole , silver oxide , medicinal chemistry , stereochemistry , organic chemistry , antimicrobial , bacteria , ionic liquid , biology , genetics , catalysis
In the present work, a series of eight new imidazole, 4,5–dichloroimidazole, 4,5–diphenylimidazole and benzimidazole based nitro–functionalized mono– N –heterocyclic carbene (NHC)–silver(I) acetate ( 7a–d ) and bis–NHC–silver(I) hexafluorophosphate complexes ( 8a–d ) were synthesised by the reaction of the corresponding azolium hexafluorophosphate salts ( 6a–d ) with silver(I) acetate and silver(I) oxide in methanol and acetonitrile, respectively. All the synthesised compounds were fully characterized by various spectroscopic techniques and elemental analyses. Additionally, the structure of bis–(1–benzyl–3–( p –nitrobenzyl)–4,5–dichloroimidazole–2–ylidene)silver(I) hexafluorophosphate complex ( 8b ) was confirmed by single crystal X–ray diffraction analysis. Preliminary in vitro antibacterial evaluation was conducted for all the compounds ( 6a–d) , ( 7a–d) , and ( 8a–d) by Kirby–Bauer's disc diffusion method followed by the determination of Minimum Inhibitory Concentration (MIC) from broth macrodilution method against five standard bacteria; two Gram–positive bacterial strains ( Staphylococcus aureus and Bacillus subtilis) and three Gram–negative bacterial strains ( Escherichia coli , Shigella sonnei, and Salmonella typhi). All the hexafluorophosphate salts ( 6a – d) were found inactive against the tested bacterial strains and their corresponding mono– and bis–NHC–silver(I) complexes ( 7a–d and 8a–d ) exhibited moderate to high antibacterial activity with MIC value in the range 8–128 μg/mL. In addition, preliminary in vitro anticancer potential of all the silver(I) complexes ( 7a–d and 8a–d ) was determined against the human derived breast adenocarcinoma cells (MCF 7) by MTT assay. All the mono– and bis–NHC–silver(I) complexes ( 7a–d and 8a–d ) orchestrated high anticancer potential with IC 50 values ranging from 10.39 to 59.56 nM. In comparison, mono– NHC–silver(I) complexes performed better than the bis–NHC–silver(I) complexes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here