z-logo
Premium
Alkyne hydrogenation using Pd–Ag hybrid nanocatalysts in surface‐immobilized dendrimers
Author(s) -
Karakhanov Edward A.,
Maximov Anton L.,
Zolotukhina Anna V.,
Yatmanova Nadezhda,
Rosenberg Edward
Publication year - 2015
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.3367
Subject(s) - chemistry , phenylacetylene , dendrimer , catalysis , alkyne , nanomaterial based catalyst , selectivity , imine , covalent bond , heterogeneous catalysis , polymer chemistry , organic chemistry , inorganic chemistry
A series of Pd–Ag mixed‐metal nanocatalysts were prepared by reduction of Pd–Ag salts in the presence of poly(propylene imine) dendrimers, which were covalently bound to the surface of a silica polyamine composite, BP‐1 (polyallylamine covalently bound to a silanized amorphous silica gel). Three different Pd‐to‐Ag ratios were evaluated (50:50, catalyst 1 ; 40:60, catalyst 2 ; 60:40, catalyst 3 ) with the goal of determining how the amount of Ag effects selectivity, rate and conversion in the selective reduction of alkynes , such as phenylacetylene and 1‐ or 4‐octyne, to the corresponding alkenes. Conditions for the catalysis are reported where there is improved selectivity without a serious reduction in rate when compared with the analogous Pd‐only catalysts. Catalyst 2 worked best for phenylacetylene and catalyst 3 worked best for the octynes. The catalysts could be reused seven times without loss of activity. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom