Premium
Heteroatom‐containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials
Author(s) -
Oosthuizen Rachel S.,
Nyamori Vincent O.
Publication year - 2012
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.2897
Subject(s) - catalysis , chemistry , crystallinity , heteroatom , ferrocene , sulfur , carbon nanotube , thermal stability , nitrogen , carbon fibers , inorganic chemistry , chemical engineering , organic chemistry , electrochemistry , materials science , composite material , composite number , engineering , crystallography , ring (chemistry) , electrode
The effects of heteroatom‐containing ferrocene catalysts on the materials produced from chemical vapour deposition (CVD) floating catalyst synthesis were investigated. Specifically, the influence of nitrogen‐ and oxygen‐containing ferrocenoyl imidazolide and ( N ‐phenylcarbamoyl)ferrocene, and sulfur‐ and oxygen‐containing S , S ‐bis(ferrocenylmethyl)dithiocarbonate on the structural morphology and distribution of the products as well as properties such as the thermal stability and crystallinity were studied. In addition, the influence of reaction parameters such as catalyst concentration and temperature were also investigated. The nitrogen‐containing catalysts produced N‐doped multi‐walled carbon nanotubes (N‐MWCNTs), whereas the sulfur‐containing catalyst produced primarily nano‐ and microspheres. A concentration of 2.5 wt% ferrocenoyl imidazolide was shown to be optimal for the synthesis of MWCNTs at 850 °C, with very low metal iron residue, highest thermal stability and highest yield (95%). In general, bamboo compartment length for N‐doped MWCNTs increased with temperature. Crystallinity trends were shown to be independent of catalyst and catalyst concentration in all cases and only dependent on temperature. The average diameter for MWCNTs was shown to be dependent on temperature, choice of catalyst and catalyst concentration in all cases. Copyright © 2012 John Wiley & Sons, Ltd.