z-logo
Premium
Determination of arsenic species in oyster tissue by microwave‐assisted extraction and liquid chromatography–atomic fluorescence detection
Author(s) -
Vilanó Marc,
Rubio Roser
Publication year - 2001
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.204
Subject(s) - arsenobetaine , chemistry , oyster , arsenic , chromatography , extraction (chemistry) , high performance liquid chromatography , fluorescence , microwave , methanol , inorganic arsenic , fishery , organic chemistry , physics , quantum mechanics , biology
A method for the determination of arsenic species in oyster tissue is established. The extraction of arsenic species is carried out by using low‐power microwaves. Quantitative extraction is obtained at a power of 40 W, and in 5 min, using the extracting agent methanol/water (1 + 1). The measurements are carried out using liquid chromatography–UV irradiation–hydride generation–atomic fluorescence detection (LC–UV–HG–AFS). Three arsenic species were detected in oyster tissue: arsenobetaine (AsBet) (87%), a probable arsenosugar (AsS) (4.9%), and dimethylarsinate (DMA) (4.7%). No influence of the clean‐up, the microwave field or the IR drying system on the stability of the arsenic compounds was observed. The extracts can be kept stable up to 3 days at 4 °C. The performance of the method is proved on fresh samples, as they are usually analysed in routine laboratories. Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom