Premium
Dicoumarol complexes of Cu(II), Fe(II) and Fe(III): preparation, characterization, in‐vitro antibacterial and DNA binding activity
Author(s) -
Pansuriya Pramod B.,
Patel Mohan N.
Publication year - 2007
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.1246
Subject(s) - chemistry , bacillus cereus , antibacterial activity , serratia marcescens , bacillus subtilis , nuclear chemistry , agarose gel electrophoresis , escherichia coli , metal , in vitro , dna , bacteria , organic chemistry , biochemistry , genetics , biology , gene
3‐3′‐Benzylidenebis[4‐hydroxycoumarin] or 4‐nitro,3‐3′‐benzylidenebis[4‐hydroxycoumarin] or 4‐methoxy,3‐3′‐benzylidenebis[4‐hydroxycoumarin] and their complexes with Cu(II), Fe(II) and Fe(III) were synthesized and characterized using 1 H‐NMR, 13 C‐NMR, IR spectra, electronic spectra, magnetic measurements and elemental analyses. The ligands, metal salts, complexes, control and standard drug were tested for their in‐vitro antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi , and Serratia marcescens. The metal complexes exhibit good activity against bacterial strains compared with parental compounds and moderate compared with the standard drug (ciprofloxacin). In‐vitro DNA‐binding activity was carried out using agarose gel electrophoresis. The synthesized compounds show effective DNA‐binding activity. Copyright © 2007 John Wiley & Sons, Ltd.