Premium
A mild and efficient palladium–triethylsilane system for reduction of olefins and carbon–carbon double bond isomerization
Author(s) -
MirzaAghayan Maryam,
Boukherroub Rabah,
Bolourtchian Mohammad
Publication year - 2006
Publication title -
applied organometallic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.53
H-Index - 71
eISSN - 1099-0739
pISSN - 0268-2605
DOI - 10.1002/aoc.1036
Subject(s) - triethylsilane , palladium , chemistry , isomerization , catalysis , double bond , organic chemistry , trichlorosilane , photochemistry , silicon
The versatility of palladium(II) acetate and palladium on activated charcoal catalysts with triethylsilane has been investigated in the hydrogenation and the isomerization of carbon–carbon double bond of 1‐alkenes. The reduction of 1‐alkenes was carried out in the presence of triethylsilane, ethanol and a catalytic amount of palladium(II) acetate or palladium on activated charcoal, at room temperature. This facile and efficient method affords high yields for hydrogenation of unsaturated alkenes to the corresponding alkanes. Then the carbon–carbon double bond isomerization of 1‐alkenes was tested using the same catalysts in the absence of solvent. The system palladium(II) acetate‐triethylsilane was found to be more effective compared with palladium on an activated charcoal–triethylsilane system at room temperature, while comparable results were obtained at 50 °C for both catalysts. Copyright © 2006 John Wiley & Sons, Ltd.