Premium
A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency
Author(s) -
Yang Can,
An Qiaoshi,
Bai HaiRui,
Zhi HongFu,
Ryu Hwa Sook,
Mahmood Asif,
Zhao Xin,
Zhang Shaowen,
Woo Han Young,
Wang JinLiang
Publication year - 2021
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202104766
Subject(s) - stacking , intermolecular force , crystallinity , core (optical fiber) , polymer , chemistry , organic solar cell , thiophene , crystallography , materials science , molecule , polymer chemistry , organic chemistry , composite material
A dissymmetric backbone and selenophene substitution on the central core was used for the synthesis of symmetric or dissymmetric A‐DA′D‐A type non‐fullerene small molecular acceptors (NF‐SMAs) with different numbers of selenophene. From S‐YSS‐Cl to A‐WSSe‐Cl and to S‐WSeSe‐Cl , a gradually red‐shifted absorption and a gradually larger electron mobility and crystallinity in neat thin film was observed. A‐WSSe‐Cl and S‐WSeSe‐Cl exhibit stronger and tighter intermolecular π–π stacking interactions, extra S⋅⋅⋅N non‐covalent intermolecular interactions from central benzothiadiazole, better ordered 3D interpenetrating charge‐transfer networks in comparison with thiophene‐based S‐YSS‐Cl . The dissymmetric A‐WSSe‐Cl ‐based device has a PCE of 17.51 %, which is the highest value for selenophene‐based NF‐SMAs in binary polymer solar cells. The combination of dissymmetric core and precise replacement of selenophene on the central core is effective to improve J sc and FF without sacrificing V oc .