Premium
Engineering High‐Spin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation
Author(s) -
Sun Yuanmiao,
Ren Xiao,
Sun Shengnan,
Liu Zheng,
Xi Shibo,
Xu Zhichuan J.
Publication year - 2021
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202102452
Subject(s) - spinel , cobalt , calcination , zinc , oxygen evolution , oxide , cobalt oxide , materials science , inorganic chemistry , spin states , catalysis , chemistry , electrochemistry , electrode , metallurgy , biochemistry
Spinel zinc cobalt oxide (ZnCo 2 O 4 ) is not considered as a superior catalyst for the electrochemical oxygen evolution reaction (OER), which is the bottleneck reaction in water‐electrolysis. Herein, taking advantage of density functional theory (DFT) calculations, we find that the existence of low‐spin (LS) state cobalt cations hinders the OER activity of spinel zinc cobalt oxide, as the t 2g 6 e g 0 configuration gives rise to purely localized electronic structure and exhibits poor binding affinity to the key reaction intermediate. Increasing the spin state of cobalt cations in spinel ZnCo 2 O 4 is found to propagate a spin channel to promote spin‐selected charge transport during OER and generate better active sites for intermediates adsorption. The experiments find increasing the calcination temperature a facile approach to engineer high‐spin (HS) state cobalt cations in ZnCo 2 O 4 , while not working for Co 3 O 4 . The activity of the best spin‐state‐engineered ZnCo 2 O 4 outperforms other typical Co‐based oxides.