Premium
Large‐Scale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscus‐Assisted Self‐Assembly
Author(s) -
Pan Shuang,
Peng Juan,
Lin Zhiqun
Publication year - 2021
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202101272
Subject(s) - materials science , conjugated system , nanoscopic scale , polymer , nanotechnology , nanomaterials , meniscus , self assembly , evaporation , composite material , optics , physics , incidence (geometry) , thermodynamics
Rapid and deliberate patterning of nanomaterials over a large area is desirable for device manufacturing. We report a method for meniscus‐assisted self‐assembly (MASA)‐enabled rapid positioning of hierarchically assembled dots and stripes composed of luminescent conjugated polymer over two length scales. Periodically arranged conjugated poly(9,9‐dioctylfluorene) (PFO) polymers, yield dots, punch‐holes and stripes at microscopic scale via MASA. Concurrent self‐assembly of PFOs into two‐dimensional lenticular crystals within each dot, punch‐hole and stripe is realized at nanoscopic scale. Hierarchical assembly is achieved by constraining the evaporation of the PFOs solution in two approximately parallel plates via a MASA process. The three‐phase contact line (TCL) of the liquid meniscus of the PFOs was printed using the upper plate, yielding an array of curved stripes. Rapid creation of hierarchical assemblies via MASA opens up possibilities for large‐scale organization of a wide range of soft matters and nanomaterials.