Premium
E. coli Nickel‐Iron Hydrogenase 1 Catalyses Non‐native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene‐reductases **
Author(s) -
Joseph Srinivasan Shiny,
Cleary Sarah E.,
Ramirez Miguel A.,
Reeve Holly A.,
Paul Caroline E.,
Vincent Kylie A.
Publication year - 2021
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202101186
Subject(s) - flavin group , alkene , cofactor , turnover number , chemistry , hydrogenase , enzyme , ene reaction , nickel , catalysis , photochemistry , stereochemistry , biochemistry , organic chemistry
A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H 2 as a simple, completely atom‐economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25–70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH 2 or FADH 2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme “ene‐reductases” to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min −1 and total turnover numbers up to 20 200 were recorded during flavin recycling.