z-logo
Premium
Advancing the Logic of Chemical Synthesis: C−H Activation as Strategic and Tactical Disconnections for C−C Bond Construction
Author(s) -
Lam Nelson Y. S.,
Wu Kevin,
Yu JinQuan
Publication year - 2021
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202011901
Subject(s) - retrosynthetic analysis , ligand (biochemistry) , chemistry , nanotechnology , combinatorial chemistry , computer science , biochemical engineering , total synthesis , engineering , stereochemistry , materials science , biochemistry , receptor
The design of synthetic routes by retrosynthetic logic is decisively influenced by the transformations available. Transition‐metal‐catalyzed C−H activation has emerged as a powerful strategy for C−C bond formation, with myriad methods developed for diverse substrates and coupling partners. However, its uptake in total synthesis has been tepid, partially due to their apparent synthetic intractability, as well as a lack of comprehensive guidelines for implementation. This Review addresses these issues and offers a guide to identify retrosynthetic opportunities to generate C−C bonds by C−H activation processes. By comparing total syntheses accomplished using traditional approaches and recent C−H activation methods, this Review demonstrates how C−H activation enabled C−C bond construction has led to more efficient retrosynthetic strategies, as well as the execution of previously unattainable tactical maneuvers. Finally, shortcomings of existing processes are highlighted; this Review illustrates how some highlighted total syntheses can be further economized by adopting next‐generation ligand‐enabled approaches.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here