z-logo
Premium
Detailed Visualization of Aromaticity Using Isotropic Magnetic Shielding
Author(s) -
Lampkin Bryan J.,
Karadakov Peter B.,
VanVeller Brett
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202008362
Subject(s) - acene , aromaticity , chemistry , sketch , isotropy , visualization , creatures , molecule , character (mathematics) , electronic structure , computational chemistry , chemical physics , computer science , physics , artificial intelligence , organic chemistry , geometry , natural (archaeology) , mathematics , archaeology , algorithm , quantum mechanics , history
For many years, Clar's aromatic sextet theory has served as a qualitative method for assessing the aromatic character of polycyclic aromatic hydrocarbons. A new approach, based on the calculation of isotropic magnetic shielding (IMS) contour plots, is shown to provide a feature‐rich picture of aromaticity that is both quantitative yet still easily interpreted. Chemists are visual creatures who are adept at discerning reactivity and chemical behavior from molecular structures. To quote Roald Hoffmann, “People like pictures. Chemists live off them.” Thus, the detailed image analysis we present simultaneously provides quantitative assessment of electronic structure, which is still easy‐to‐understand through visual inspection, embedded in an aesthetically appealing and intuitive picture that draws the reader in. We provide novel computed IMS contour plots for a representative selection of aromatic molecules. Where Clar's static drawings capture only a partial sketch of the electronic properties of a molecule, IMS contour plots present a detailed, global landscape of a molecule that sums all possible resonance structures. This novel analysis allows us to correct certain drawbacks of Clar's analysis with respect to polycyclic aromatics and quantitatively assess the bonding and electronic structure of acene hydrocarbons.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here