Premium
Stretchable Electrochemical Sensors for Cell and Tissue Detection
Author(s) -
Liu YanLing,
Huang WeiHua
Publication year - 2021
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202007754
Subject(s) - nanotechnology , biomolecule , electrode , materials science , fabrication , mechanotransduction , computer science , chemistry , neuroscience , biology , medicine , alternative medicine , pathology
Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial‐enabled strategies. We then describe representative applications of stretchable sensors in the real‐time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.