Premium
Exerting Spatial Control During Nanoparticle Occlusion within Calcite Crystals
Author(s) -
Ning Yin,
Han Yide,
Han Lijuan,
Derry Matthew J.,
Armes Steven P.
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202007110
Subject(s) - calcite , nanoparticle , underpinning , rational design , nanocomposite , nanotechnology , materials science , chemistry , mineralogy , geology , geotechnical engineering
In principle, nanoparticle occlusion within crystals provides a straightforward and efficient route to make new nanocomposite materials. However, developing a deeper understanding of the design rules underpinning this strategy is highly desirable. In particular, controlling the spatial distribution of the guest nanoparticles within the host crystalline matrix remains a formidable challenge. Herein, we show that the surface chemistry of the guest nanoparticles and the [Ca 2+ ] concentration play critical roles in determining the precise spatial location of the nanoparticles within calcite crystals. Moreover, in situ studies provide important mechanistic insights regarding surface‐confined nanoparticle occlusion. Overall, this study not only provides useful guidelines for efficient nanoparticle occlusion, but also enables the rational design of patterned calcite crystals using model anionic block copolymer vesicles.