Premium
Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells
Author(s) -
Zhao Hang,
Ibrahimova Vusala,
Garanger Elisabeth,
Lecommandoux Sébastien
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202001868
Subject(s) - protocell , coacervate , microfluidics , chemistry , biophysics , organelle , nanotechnology , chromatography , materials science , biology , biochemistry , membrane
Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system.