z-logo
Premium
Gold(I)‐Catalyzed Highly Diastereo‐ and Enantioselective Cyclization–[4+3] Annulation Cascades between 2‐(1‐Alkynyl)‐2‐alken‐1‐ones and Anthranils
Author(s) -
Kardile Rahul Dadabhau,
Chao TzuHsuan,
Cheng MuJeng,
Liu RaiShung
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202001854
Subject(s) - enantioselective synthesis , annulation , catalysis , chemistry , yield (engineering) , combinatorial chemistry , stereochemistry , scope (computer science) , medicinal chemistry , organic chemistry , physics , computer science , thermodynamics , programming language
This work reports gold‐catalyzed [4+3]‐annulations of 2‐(1‐alkynyl)‐2‐alken‐1‐ones with anthranils to yield epoxybenzoazepine products with excellent exo ‐diastereoselectivity (dr>25:1). The utility of this new gold catalysis is manifested by applicable substrates over a broad scope. More importantly, the enantioselective versions of these [4+3]‐cycloadditions have been developed satisfactorily with chiral gold catalysts under ambient conditions (DCM, 0 °C); the ee levels range from 88.0–99.9 %. With DFT calculations, we postulate a stepwise pathway to rationalize the preferable exo ‐stereoselection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here