z-logo
Premium
Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds
Author(s) -
Hossain Mohammad Mosharraf,
Atkinson Joshua L.,
Hartley C. Scott
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.202001523
Subject(s) - transient (computer programming) , dissipative system , materials science , computer science , physics , thermodynamics , programming language
Abstract Dissipative assembly has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single short‐lived covalent bond. Herein, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycles are assembled efficiently as a consequence of both fuel‐dependent and fuel‐independent mechanisms; they undergo slower decomposition, building up as the fuel recycles the components, and are a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out‐of‐equilibrium species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here