Premium
Spatiotemporal Dynamics of Aggregation‐Induced Emission Enhancement Controlled by Optical Manipulation
Author(s) -
Wang ShunFa,
Lin JhaoRong,
Ishiwari Fumitaka,
Fukushima Takanori,
Masuhara Hiroshi,
Sugiyama Teruki
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201916240
Subject(s) - aggregation induced emission , dynamics (music) , nanotechnology , materials science , physics , optics , fluorescence , acoustics
We present spatiotemporal control of aggregation‐induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer‐sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission. The fluorescence intensity at the peak wavelength of 540 nm is tremendously enhanced with growth, meaning that AIEE is activated by optical manipulation. Amazingly, the switching on/off of the activation of AIEE is arbitrarily controlled by alternating the laser power. This result means that optical manipulation increases the local concentration, which overcomes the electrostatic repulsion between the protonated molecules, namely, optical manipulation changes the aggregate structure. The dynamics and mechanism in AIEE controlled by optical manipulation will be discussed from the viewpoint of molecular conformation and association depending on the laser power.