Premium
Asymmetric Total Syntheses of Di‐ and Sesquiterpenoids by Catalytic C−C Activation of Cyclopentanones
Author(s) -
Hou SiHua,
Prichina Adriana Y.,
Zhang Mengxi,
Dong Guangbin
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201915821
Subject(s) - chemistry , enantioselective synthesis , catalysis , regioselectivity , allylic rearrangement , cyclopentanone , substrate (aquarium) , amination , cycloisomerization , stereochemistry , total synthesis , phosphoric acid , ketone , combinatorial chemistry , organic chemistry , oceanography , geology
To show the synthetic utility of the catalytic C−C activation of less strained substrates, described here are the collective and concise syntheses of the natural products (−)‐microthecaline A, (−)‐leubehanol, (+)‐pseudopteroxazole, (+)‐ seco ‐pseudopteroxazole, pseudopterosin A–F and G—J aglycones, and (+)‐heritonin. The key step in these syntheses involve a Rh‐catalyzed C−C/C−H activation cascade of 3‐arylcyclopentanones, which provides a rapid and enantioselective route to access the polysubstituted tetrahydronaphthalene cores presented in these natural products. Other important features include 1) the direct C−H amination of the tetralone substrate in the synthesis of (−)‐microthecaline A, 2) the use of phosphoric acid to enhance efficiency and regioselectivity for problematic cyclopentanone substrates in the C−C activation reactions, and 3) the direct conversion of serrulatane into amphilectane diterpenes by an allylic cyclodehydrogenation coupling.