z-logo
Premium
Iron‐Catalysed Radical Polymerisation by Living Bacteria
Author(s) -
Bennett Mechelle R.,
Gurnani Pratik,
Hill Phil J.,
Alexander Cameron,
Rawson Frankie J.
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201915084
Subject(s) - redox , chemistry , monomer , polymerization , polymer , bacteria , combinatorial chemistry , shewanella oneidensis , organic chemistry , biology , genetics
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria‐mediated iron‐catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal‐chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans , Escherichia coli , and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water‐soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate “unnatural” polymers in the presence of “host” cells, thus setting up the possibility of making natural–synthetic hybrid structures and conjugates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here