Premium
Molecular Springs: Integration of Complex Dynamic Architectures into Functional Devices
Author(s) -
Huang ChangBo,
Ciesielski Artur,
Samorì Paolo
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201914931
Subject(s) - nanoscopic scale , supramolecular chemistry , nanotechnology , spring (device) , materials science , computer science , chemistry , engineering , mechanical engineering , molecule , organic chemistry
Molecular/supramolecular springs are artificial nanoscale objects possessing well‐defined structures and tunable physicochemical properties. Like a macroscopic spring, supramolecular springs are capable of switching their nanoscale conformation as a response to external stimuli by undergoing mechanical spring‐like motions. This dynamic action offers intriguing opportunities for engineering molecular nanomachines by translating the stimuli‐responsive nanoscopic motions into macroscopic work. These nanoscopic objects are reversible dynamic multifunctional architectures which can express a variety of novel properties and behave as adaptive nanoscopic systems. In this Minireview, we focus on the design and structure–property relationships of supramolecular springs and their (self‐)assembly as a prerequisite towards the generation of novel dynamic materials featuring controlled movements to be readily integrated into macroscopic devices for applications in sensing, robotics, and the internet of things.