Premium
Two‐Dimensional Noble‐Metal Chalcogenides and Phosphochalcogenides
Author(s) -
Kempt Roman,
Kuc Agnieszka,
Heine Thomas
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201914886
Subject(s) - noble metal , materials science , nanotechnology , quantum dot , semiconductor , field (mathematics) , metal , optoelectronics , metallurgy , mathematics , pure mathematics
Noble‐metal chalcogenides, dichalcogenides, and phosphochalcogenides are an emerging class of two‐dimensional materials. Quantum confinement (number of layers) and defect engineering enables their properties to be tuned over a broad range, including metal‐to‐semiconductor transitions, magnetic ordering, and topological surface states. They possess various polytypes, often of similar formation energy, which can be accessed by selective synthesis approaches. They excel in mechanical, optical, and chemical sensing applications, and feature long‐term air and moisture stability. In this Minireview, we summarize the recent progress in the field of noble‐metal chalcogenides and phosphochalcogenides and highlight the structural complexity and its impact on applications.