Premium
Photocontrolled Iodine‐Mediated Reversible‐Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light
Author(s) -
Tian Chun,
Wang Peng,
Ni Yuanyuan,
Zhang Lifen,
Cheng Zhenping,
Zhu Xiulin
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201914835
Subject(s) - polymerization , chemistry , iodide , photochemistry , polymer chemistry , monomer , alkyl , radical polymerization , polymer , solvent , organic chemistry
Herein, near‐infrared (NIR) photocontrolled iodide‐mediated reversible‐deactivation radical polymerization (RDRP) of methacrylates, without an external photocatalyst, was developed using an alkyl iodide (e.g., 2‐iodo‐2‐methylpropionitrile) as the initiator at room temperature. This example is the first use of a series of special solvents containing carbonyl groups (e.g., 1,3‐dimethyl‐2‐imidazolidinone) as both solvent and catalyst for photocontrolled RDRP using long‐wavelength ( λ max =730 nm) irradiation. The polymerization system comprises monomer, alkyl iodide initiator, and solvent. Well‐defined polymers were synthesized with excellent control over the molecular weights and molecular weight distributions ( M w / M n <1.21). The living features of this system were confirmed by polymerization kinetics, multiple controlled “on‐off” light switching cycles, and chain extension experiments. Importantly, the polymerizations proceeded successfully with various barriers (pork skin and A4 paper), demonstrating the advantage of high‐penetration NIR light.