z-logo
Premium
Exploring the Vibrational Side of Spin‐Phonon Coupling in Single‐Molecule Magnets via 161 Dy Nuclear Resonance Vibrational Spectroscopy
Author(s) -
Scherthan Lena,
Pfleger Rouven F.,
Auerbach Hendrik,
Hochdörffer Tim,
Wolny Juliusz A.,
Bi Wenli,
Zhao Jiyong,
Hu Michael Y.,
Alp E. Ercan,
Anson Christopher E.,
Diller Rolf,
Powell Annie K.,
Schünemann Volker
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201914728
Subject(s) - phonon , intramolecular force , density functional theory , molecular vibration , molecule , chemistry , mössbauer spectroscopy , resonance (particle physics) , magnet , spectroscopy , rotational–vibrational coupling , single molecule magnet , crystallography , atomic physics , materials science , molecular physics , nuclear magnetic resonance , computational chemistry , condensed matter physics , physics , magnetic field , stereochemistry , organic chemistry , quantum mechanics , magnetization
Synchrotron‐based nuclear resonance vibrational spectroscopy (NRVS) using the Mössbauer isotope 161 Dy has been employed for the first time to study the vibrational properties of a single‐molecule magnet (SMM) incorporating Dy III , namely [Dy(Cy 3 PO) 2 (H 2 O) 5 ]Br 3 ⋅2 (Cy 3 PO)⋅2 H 2 O ⋅2 EtOH. The experimental partial phonon density of states (pDOS), which includes all vibrational modes involving a displacement of the Dy III ion, was reproduced by means of simulations using density functional theory (DFT), enabling the assignment of all intramolecular vibrational modes. This study proves that 161 Dy NRVS is a powerful experimental tool with significant potential to help to clarify the role of phonons in SMMs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here