Premium
Crystal‐to‐Crystal Synthesis of Helically Ordered Polymers of Trehalose by Topochemical Polymerization
Author(s) -
Hema Kuntrapakam,
Gonnade Rajesh G.,
Sureshan Kana M.
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201914164
Subject(s) - polymerization , monomer , polymer , materials science , crystallography , crystal (programming language) , azide , crystal structure , polymer chemistry , chemistry , organic chemistry , computer science , programming language
The synthesis of crystalline helical polymers of trehalose via topochemical azide–alkyne cycloaddition (TAAC) of a trehalose‐based monomer is presented. An unsymmetrical trehalose derivative having azide and alkyne crystallizes in two different forms having almost similar packing. Upon heating, both the crystals undergo TAAC reaction to form crystalline polymers. Powder X‐ray diffraction (PXRD) studies revealed that the monomers in both the crystals polymerize in a crystal‐to‐crystal fashion; circular dichroism (CD) studies of the product crystals revealed that the formed polymer is helically ordered. This solvent‐free, catalyst‐free polymerization method that eliminates the tedious purification of the polymeric product exemplifies the advantage of topochemical polymerization reaction over traditional solution‐phase polymerization.