z-logo
Premium
Total Synthesis of Talatisamine
Author(s) -
Kamakura Daiki,
Todoroki Hidenori,
Urabe Daisuke,
Hagiwara Koichi,
Inoue Masayuki
Publication year - 2020
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201912737
Subject(s) - stereocenter , ring (chemistry) , stereochemistry , chemistry , total synthesis , cyclohexenone , enantioselective synthesis , organic chemistry , catalysis
Talatisamine ( 1 ) is a member of the C 19 ‐diterpenoid alkaloid family, and exhibits K + channel inhibitory and antiarrhythmic activities. The formidable synthetic challenge that 1 presents is due to its highly oxidized and intricately fused hexacyclic 6/7/5/6/6/5‐membered‐ring structure (ABCDEF‐ring) with 12 contiguous stereocenters. Here we report an efficient synthetic route to 1 by the assembly of two structurally simple fragments, chiral 6/6‐membered AE‐ring 7 and aromatic 6‐membered D‐ring 6 . AE‐ring 7 was constructed from 2‐cyclohexenone ( 8 ) through fusing an N‐ethylpiperidine ring by a double Mannich reaction. After coupling 6 with 7 , an oxidative dearomatization/Diels–Alder reaction sequence generated fused pentacycle 4 b . The newly formed 6/6‐membered ring system was then stereospecifically reorganized into the 7/5‐membered BC‐ring of 3 via a Wagner–Meerwein rearrangement. Finally, Hg(OAc) 2 induced an oxidative aza‐Prins cyclization of 2 , thereby forging the remaining 5‐membered F‐ring. The total synthesis of 1 was thus accomplished by optimizing and orchestrating 33 transformations from 8 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here