Premium
Tunable Reduction of 2,4,6‐Tri(4‐pyridyl)‐1,3,5‐Triazine: From Radical Anion to Diradical Dianion to Radical Metal–Organic Framework
Author(s) -
Tang Shuxuan,
Ruan Huapeng,
Feng Rui,
Zhao Yue,
Tan Gengwen,
Zhang Li,
Wang Xinping
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201910468
Subject(s) - diradical , electron paramagnetic resonance , chemistry , singlet state , photochemistry , radical , radical ion , ion , metal , excited state , molecule , crystallography , organic chemistry , nuclear magnetic resonance , physics , nuclear physics
The reduction of 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (TPT) with alkali metals resulted in four radical anion salts ( 1 , 2 , 4 and 5 ) and one diradical dianion salt ( 3 ). Single‐crystal X‐ray diffraction and electron paramagnetic resonance (EPR) spectroscopy reveal that 1 contains the monoradical anion TPT .− stacked in one‐dimensional (1D) with K + (18c6) and 2 can be viewed as a 1D magnetic chain of TPT .− , while 4 and 5 form radical metal‐organic frameworks (RMOFs). 1D pore passages, with a diameter of 6.0 Å, containing solvent molecules were observed in 5 . Variable‐temperature EPR measurements show that 3 has an open‐shell singlet ground state that can be excited to a triplet state, consistent with theoretical calculation. The work suggests that the direct reduction approach could lead to the formation of RMOFs.