Premium
Shape Rememorization of an Organosuperelastic Crystal through Superelasticity–Ferroelasticity Interconversion
Author(s) -
Sakamoto Shunichi,
Sasaki Toshiyuki,
SatoTomita Ayana,
Takamizawa Satoshi
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201905769
Subject(s) - ferroelasticity , pseudoelasticity , materials science , martensite , metallurgy , microstructure , ferroelectricity , optoelectronics , dielectric
As altering permanent shapes without loss of material function is of practical importance for material molding, especially for elastic materials, shape‐rememorization ability would enhance the utility of elastic crystalline materials. Since diffusionless plastic deformability can preserve the crystallinity of materials, the interconversion of diffusionless mechanical deformability between superelasticity and ferroelasticity could enable shape rememorization of superelastic single crystals. This study demonstrates the shape rememorization of an organosuperelastic single crystal of 1,4‐dicyanobenzene through time‐reversible interconversion of superelasticity–ferroelasticity relaxation by holding the mechanically twinned crystal without heating. The shape‐rememorization ability of the organosuperelastic crystal indicates the compatibility of superelasticity (antiferroelasticity) and ferroelasticity as well as the intrinsic workability of organic crystalline materials capable of recovering their crystal functions under mild conditions.