Premium
N‐Heterocyclic Carbene Catalyzed (5+1) Annulations Exploiting a Vinyl Dianion Synthon Strategy
Author(s) -
Nguyen Xuan B.,
Nakano Yuji,
Duggan Nisharnthi M.,
Scott Lydia,
Breugst Martin,
Lupton David W.
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201905475
Subject(s) - cycloisomerization , synthon , annulation , chemistry , carbene , methyl vinyl ketone , bicyclic molecule , catalysis , stereochemistry , organocatalysis , medicinal chemistry , combinatorial chemistry , organic chemistry , enantioselective synthesis
Direct polarity inversion of conjugate acceptors provides a valuable entry to homoenolates. N‐heterocyclic carbene (NHC) catalyzed reactions, in which β‐unsubstituted conjugate acceptors undergo homoenolate formation and C−C bond formation twice, have been developed. Specifically, the all‐carbon (5+1) annulations give a range of mono‐ and bicyclic cyclohexanones (31 examples). In the first family of annulations, β‐unsubstituted acrylates tethered to a divinyl ketone undergo cycloisomerization, providing hexahydroindenes and tetralins. In the second, partially untethered substrates undergo an intermolecular (5+1) annulation involving dimerization followed by cycloisomerization. While enantioselectivity was not possible with the former, the latter proved viable, allowing cyclohexanones to be produced with high levels of enantiopurity (most >95:5 e.r.) and exclusive diastereoselectivity (>20:1 d.r.). Derivatizations and mechanistic studies are also reported.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom