z-logo
Premium
Iron‐Catalyzed C−H Activation with Propargyl Acetates: Mechanistic Insights into Iron(II) by Experiment, Kinetics, Mössbauer Spectroscopy, and Computation
Author(s) -
Mo Jiayu,
Müller Thomas,
Oliveira João C. A.,
Demeshko Serhiy,
Meyer Franc,
Ackermann Lutz
Publication year - 2019
Publication title -
angewandte chemie international edition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.831
H-Index - 550
eISSN - 1521-3773
pISSN - 1433-7851
DOI - 10.1002/anie.201904110
Subject(s) - chemistry , alkyne , propargyl , mössbauer spectroscopy , kinetics , catalysis , ligand (biochemistry) , reaction mechanism , spectroscopy , amide , photochemistry , crystallography , organic chemistry , biochemistry , physics , receptor , quantum mechanics
An iron‐catalyzed C−H/N−H alkyne annulation was realized by using a customizable clickable triazole amide under exceedingly mild reaction conditions. A unifying mechanistic approach combining experiment, spectroscopy, kinetics, and computation provided strong support for facile C−H activation by a ligand‐to‐ligand hydrogen transfer (LLHT) mechanism. Combined Mössbauer spectroscopic analysis and DFT calculations were indicative of high‐spin iron(II) species as the key intermediates in the C−H activation manifold.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom